JEE Advanced Syllabus 2024 Exam Date, Detailed Syllabus – Physics, Chemistry, Mathematics

JEE Advanced Syllabus 2024: यदि आप भी  4 जून, 2023 को आयोजित होने वाली JEE Advanced  की परीक्षा  मे बैठने वाले है तो  हमारा यह आर्टिकल केवल आपके लिए आपके है क्योंकि हम, आपको अपने इस आर्टिकल की मदद से विस्तार से JEE Advanced Syllabus 2024 के बारे में बतायेगे।

BiharHelp App

आपको बता दें कि, JEE Advanced Syllabus 2024 के तहत हम आपको विषयवार महत्वपूर्ण बिंदुओं  की जानकारी प्रदान करेगे ताकि आप उन सभी  महत्वपूर्ण बिंदुओं  को कवर करेगे जिनसे  प्रश्न पूछे जाने की सबसे ज्यादा संभावना  होगी आपकी तैयारी पक्की और जीत निश्चित  हो सकें।

अन्त, आर्टिकल के अन्त मे हमें, उम्मीद है कि, आपको हमारा यह आर्टिकल बेहद पसंद आया होगा जिसके लिए आप हमारे इस आर्टिकल को लाइक, शेयर व कमेंट करेगे।

Read Also – IRDAI Assistant Manager Syllabus 2023 & Exam Pattern – जाने क्या है पूरा सेलेबस और एग्जाम पैर्टन?

JEE Advanced Syllabus 2024

JEE Advanced Syllabus 2024 – Overview

Name of the Institute
भारतीय प्रौद्योगिकी संस्थान गुवाहाटी
Indian Institute of Technology Guwahati
Name of the Exam
संयुक्त प्रवेश परीक्षा (उच्च) २०२३
Joint Entrance Examination (Advanced) 2023
Name of the Article JEE Advanced Syllabus 2024
Type of Article Syllabus
Admit Card Will Release On? Monday, May 29, 2023 (10:00 IST)
Sunday, June 04, 2023 (14:30 IST)
Exam Held On? Sunday, June 04, 2023
Paper 1: 09:00-12:00 IST
Paper 2: 14:30-17:30 IST
Official Website Click Here

29 मई को जारी होगा JEE Advanced का एडमिट कार्ड जारी, जाने कब होगी परीक्षा और क्या होगा सेलेबस – JEE Advanced Syllabus 2024?

अपने इस आर्टिकल में  हमने आप सभी  परीक्षार्थियो एंव उम्मीदवारों  का हार्दिक स्वागत  करना चाहते है जो कि, Joint Entrance Examination (Advanced) 2023 मे बैठने वाले है और इसीलिए हम, आपको बताना चाहते है कि, परीक्षा तिथि को  जारी कर दिया गया है व इसीलिए अब आपको अपनी तैयारी को अन्तिम रुप देना शुरु कर देना होगा जिसमे आपकी  सहायता के लिए हम आपको JEE Advanced Syllabus 2024 के बारे में बतायेगे।

आपको बता दें कि, JEE Advanced Syllabus 2024 के तहत  29 मई, 2023  को एडमिट कार्ड को जारी किया जायेगा जिसे आप 4 जून, 2023  तक डाउनलोड कर पायेगे और  परीक्षा  मे भाग ले पायेगे ।

अन्त, आर्टिकल के अन्त मे हमें, उम्मीद है कि, आपको हमारा यह आर्टिकल बेहद पसंद आया होगा जिसके लिए आप हमारे इस आर्टिकल को लाइक, शेयर व कमेंट करेगे।

Read Also – 

महत्वपूर्ण तिथियां – JEE Advanced Syllabus 2024?

Activity Day, Date and Time (IST)
JEE (Main) 2023 [Computer Based Tests by NTA] JEE (Main) website
Results of JEE (Main) 2023 by NTA JEE (Main) website
Online Registration for JEE (Advanced) 2023 Sunday, April 30, 2023 (10:00 IST)
Sunday, May 07, 2023 (17:00 IST)
Last date for fee payment of registered candidates Monday, May 08, 2023 (17:00 IST)
Admit Card available for downloading Monday, May 29, 2023 (10:00 IST)
Sunday, June 04, 2023 (14:30 IST)
Choosing of scribe by PwD candidates /
candidates with less than 40% disability and having difficulty in writing
Saturday, June 03, 2023
JEE (Advanced) 2023 Examination Sunday, June 04, 2023
Paper 1: 09:00-12:00 IST
Paper 2: 14:30-17:30 IST
Copy of candidate responses to be available on the JEE (Advanced) 2023 website Friday, June 09, 2023 (17:00 IST)
Online display of provisional answer keys Sunday, June 11, 2023 (10:00 IST)
Feedback and comments on provisional answer keys Sunday, June 11, 2023 (10:00 IST)
Monday, June 12, 2023 (17:00 IST)
Online declaration of final answer key and Results of JEE (Advanced) 2023 Sunday, June 18, 2023 (10:00 IST)
Online registration for Architecture Aptitude Test (AAT) 2023 Sunday, June 18, 2023 (10:00 IST)
Monday, June 19, 2023 (17:00 IST)
Tentative Start of Joint Seat Allocation (JoSAA) 2023 Process Monday, June 19, 2023 (17:00 IST)
Architecture Aptitude Test (AAT) 2023 Wednesday, June 21, 2023
(09:00 IST to 12:00 IST)
Declaration of results of AAT 2023 Saturday, June 24, 2023 (17:00 IST)

4 जून को होने वाली परीक्षा के लिए ऐसे करे तैयारी, जाने पूरा सेलेबस – JEE Advanced Syllabus 2024?

वे सभी परीक्षार्थी जो कि, JEE (Advanced) 2023 Examination  मे बैठने वाले है उन्हें हम, विस्तार से पूरा  सेलेबस  बताना चाहते है जो कि, इस प्रकार से है  –

Topic Wise Important Points जिन्हें परीक्षा मे पूछा जा सकता है?

Revised Syllabus to be followed from JEE (Advanced) 2023

Topic Important Points

General Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of using simple pendulum, Young’s modulus – elasticity of the material Surface tension of water by
capillary rise and effect of detergents. Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column,
Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.


Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform circular
motion; Relative velocity.
Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and
dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear
momentum and mechanical energy.
Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.

Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of
uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of
angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid
bodies. Forced and damped oscillation (in one dimension), resonance.
Linear and angular simple harmonic motions.

Hooke’s law, Young’s modulus.
Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Kepler’s law,
Geostationary orbits, Motion of planets and satellites in circular orbits; Escape velocity.

Pressure in a fluid; Pascal’s law;Buoyancy; Surface energy and surface tension, angle of contact,
drops, bubbles and capillary rise. Viscosity (Poiseuille’s equation excluded), Modulus of rigidity
and bulk modulus in mechanics. Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications. Wave motion (plane waves only), longitudinal
and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns; Resonance; Beats; Speed of sound in gases; Doppler effect (in sound)

Thermal Phsyics

Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases); Isothermal and adiabatic
processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Second law of thermodynamics, reversible and irreversible processes, Carnot engine and its efficiency; Blackbody radiation: absorptive and emissive powers;
Kirchhoff’s law; Wien’s displacement law, Stefan’s law.

Electricty & Magnestism

Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric
field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.
Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor. Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current.
Biot–Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along
the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.
Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving
coil galvanometer, voltmeter, ammeter and their conversions. Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR, LC
and LCR(in series) circuits with d.c. and a.c. sources.

Electromagtic Waves

Electromagnetic waves and their characteristics. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays) including elementary facts about their uses


Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen’s principle, interference limited to Young’s double slit experiment. Diffraction due to a single slit. Polarization of light, plane polarized light; Brewster’s law, Polaroids.

Modern Phsycis

Atomic nucleus; α, β and γ radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in
these processes.

Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.

CHEMISTRY  General Topics

Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept and stoichiometry) involving
common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms
of mole fraction, molarity, molality and normality.

States of Matter: Gases and Liquids 

Gas laws and ideal gas equation, absolute scale of temperature; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Diffusion of gases. Intermolecular
interactions: types, distance dependence, and their effect on properties; Liquids: vapour pressure,
surface tension, viscosity.

Atomic Structure

Bohr model, spectrum of hydrogen atom; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom: Energies,
quantum numbers, wave function and probability density (plots only), shapes of s, p and d orbitals; Aufbau principle; Pauli’s exclusion principle and Hund’s rule.

Chemical Bonding and Molecular Structure

Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Molecular orbital energy diagrams for homonuclear diatomic species (up to Ne2); Hydrogen bond; Polarity
in molecules, dipole moment; VSEPR model and shapes of molecules (linear, angular, triangular,
square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

Chemical Thermodynamics

Intensive and extensive properties, state functions, First law of thermodynamics; Internal energy, work (pressure-volume only) and heat; Enthalpy, heat capacity, standard state, Hess’s law;
Enthalpy of reaction, fusion and vapourization, and lattice enthalpy; Second law of thermodynamics; Entropy; Gibbs energy; Criteria of equilibrium and spontaneity.

Chemical and Ionic Equilibrium 

Law of mass action; Significance of ȟܩ and ȟܩ ٓin chemical equilibrium; Equilibrium constant
(Kp and Kc) and reaction quotient, Le Chatelier’s principle (effect of concentration, temperature
and pressure); Solubility product and its applications, common ion effect, pH and buffer solutions;
Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.


Electrochemical cells and cell reactions; Standard electrode potentials; Electrochemical work,
Nernst equation; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis;
Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law;
Batteries: Primary and Secondary, fuel cells; Corrosion.

Chemical Kinetics 

Rates of chemical reactions; Order and molecularity of reactions; Rate law, rate constant, half-life;
Differential and integrated rate expressions for zero and first order reactions; Temperature
dependence of rate constant (Arrhenius equation and activation energy); Catalysis: Homogeneous
and heterogeneous, activity and selectivity of solid catalysts, enzyme catalysis and its mechanism.

Solid State

Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ),
close packed structure of solids (cubic and hexagonal), packing in fcc, bcc and hcp lattices; Nearest
neighbours, ionic radii and radius ratio, point defects.


Henry’s law; Raoult’s law; Ideal solutions; Colligative properties: lowering of vapour pressure,
elevation of boiling point, depression of freezing point, and osmotic pressure; van’t Hoff factor.

Surface Chemistry

Elementary concepts of adsorption: Physisorption and Chemisorption, Freundlich adsorption
isotherm; Colloids: types, methods of preparation and general properties; Elementary ideas of
emulsions, surfactants and micelles (only definitions and examples).

Classification of Elements and Periodicity in Properties

Modern periodic law and the present form of periodic table; electronic configuration of elements;
periodic trends in atomic radius, ionic radius, ionization enthalpy, electron gain enthalpy, valence,
oxidation states, electronegativity, and chemical reactivity.


Position of hydrogen in periodic table, occurrence, isotopes, preparation, properties and uses of
hydrogen; hydrides – ionic, covalent and interstitial; physical and chemical properties of water,
heavy water; hydrogen peroxide-preparation, reactions, use and structure; hydrogen as a fuel.

s-Block Elements

Alkali and alkaline earth metals-reactivity towards air, water, dihydrogen, halogens, acids; their reducing nature including solutions in liquid ammonia; uses of these elements; general
characteristics of their oxides, hydroxides, halides, salts of oxoacids; anomalous behaviour of
lithium and beryllium; preparation, properties, and uses of compounds of sodium (sodium carbonate, sodium chloride, sodium hydroxide, sodium hydrogen carbonate) and calcium (calcium oxide, calcium hydroxide, calcium carbonate, calcium sulphate).

p-Block Elements

Oxidation state and trends in chemical reactivity of elements of groups 13-17; anomalous
properties of boron, carbon, nitrogen, oxygen, and fluorine with respect to other elements in their
respective groups.
Group 13: Reactivity towards acids, alkalis, and halogens; preparation, properties, and uses of
borax, orthoboric acid, diborane, boron trifluoride, aluminium chloride, and alums; uses of boron
and aluminium.

d-Block Elements

Oxidation states and their stability; standard electrode potentials; interstitial compounds; alloys;
catalytic properties; applications; preparation, structure, and reactions of oxoanions of chromium
and manganese.

f-Block Elements 

Lanthanoid and actinoid contractions; oxidation states; general characteristics.

Coordination Compounds

Werner’s theory; Nomenclature, cis-trans and ionization isomerism, hybridization and geometries
(linear, tetrahedral, square planar and octahedral) of mononuclear coordination compounds;
Bonding [VBT and CFT (octahedral and tetrahedral fields)]; Magnetic properties (spin-only) and
colour of 3d-series coordination compounds; Ligands and spectrochemical series; Stability;
Importance and applications; Metal carbonyls.

Isolation of Metals 

Metal ores and their concentration; extraction of crude metal from concentrated ores:
thermodynamic (iron, copper, zinc) and electrochemical (aluminium) principles of metallurgy;
cyanide process (silver and gold); refining.

Principles of Qualitative Analysis

Groups I to V (only Ag+ , Hg2+, Cu2+, Pb2+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+);
Nitrate, halides (excluding fluoride), carbonate and bicarbonate, sulphate and sulphide.

Environmental Chemistry

Atmospheric pollution; water pollution; soil pollution; industrial waste; strategies to control
environmental pollution; green chemistry.

Basic Principles of Organic Chemistry 

Hybridisation of carbon; σ and π-bonds; Shapes of simple organic molecules; aromaticity; Structural and geometrical isomerism; Stereoisomers and stereochemical relationship
(enantiomers, diastereomers, meso) of compounds containing only up to two asymmetric centres (R,S and E,Z configurations excluded); Determination of empirical and molecular formulae of
simple compounds by combustion method only; IUPAC nomenclature of organic molecules
(hydrocarbons, including simple cyclic hydrocarbons and their mono-functional and bi-functional derivatives only); Hydrogen bonding effects; Inductive, Resonance and Hyperconjugative effects;
Acidity and basicity of organic compounds; Reactive intermediates produced during homolytic
and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and
free radicals.


Homologous series; Physical properties (melting points, boiling points and density) and effect of
branching on them; Conformations of ethane and butane (Newman projections only); Preparation
from alkyl halides and aliphatic carboxylic acids; Reactions: combustion, halogenation (including
allylic and benzylic halogenation) and oxidation.

Alkenes and Alkynes

Physical properties (boiling points, density and dipole moments); Preparation by elimination
reactions; Acid catalysed hydration (excluding the stereochemistry of addition and elimination);
Metal acetylides; Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes;
Electrophilic addition reactions of alkenes with X2, HX, HOX, (X=halogen); Effect of peroxide
on addition reactions; cyclic polymerization reaction of alkynes.


Structure; Electrophilic substitution reactions: halogenation, nitration, sulphonation, FriedelCrafts alkylation and acylation; Effect of directing groups (monosubstituted benzene) in these


Physical properties; Preparation, Electrophilic substitution reactions of phenol (halogenation,
nitration, sulphonation); Reimer-Tiemann reaction, Kolbe reaction; Esterification; Etherification;
Aspirin synthesis; Oxidation and reduction reactions of phenol.

Alkyl Halides

Rearrangement reactions of alkyl carbocation; Grignard reactions; Nucleophilic substitution
reactions and their stereochemical aspects.


Physical properties; Reactions: esterification, dehydration (formation of alkenes and ethers);
Reactions with: sodium, phosphorus halides, ZnCl2/concentrated HCl, thionyl chloride;
Conversion of alcohols into aldehydes, ketones and carboxylic acids.


Preparation by Williamson’s synthesis; C-O bond cleavage reactions.

Aldehydes and Ketones

Preparation of: aldehydes and ketones from acid chlorides and nitriles; aldehydes from esters;
benzaldehyde from toluene and benzene; Reactions: oxidation, reduction, oxime and hydrazone formation; Aldol condensation, Cannizzaro reaction; Haloform reaction; Nucleophilic addition
reaction with RMgX, NaHSO3, HCN, alcohol, amine.

Carboxylic Acids

Physical properties; Preparation: from nitriles, Grignard reagents, hydrolysis of esters and amides;
Preparation of benzoic acid from alkylbenzenes; Reactions: reduction, halogenation, formation of
esters, acid chlorides and amides.


Preparation from nitro compounds, nitriles and amides; Reactions: Hoffmann bromamide
degradation, Gabriel phthalimide synthesis; Reaction with nitrous acid, Azo coupling reaction of diazonium salts of aromatic amines; Sandmeyer and related reactions of diazonium salts;
Carbylamine reaction, Hinsberg test, Alkylation and acylation reactions.


Reactions: Fittig, Wurtz-Fittig; Nucleophilic aromatic substitution in haloarenes and substituted
haloarenes (excluding benzyne mechanism and cine substitution).


Carbohydrates: Classification; Mono- and di-saccharides (glucose and sucrose); Oxidation;
Reduction; Glycoside formation and hydrolysis of disaccharides (sucrose, maltose, lactose);
Proteins: Amino acids; Peptide linkage; Structure of peptides (primary and secondary); Types of
proteins (fibrous and globular).
Nucleic acids: Chemical composition and structure of DNA and RNA.


Types of polymerization (addition, condensation); Homo and copolymers; Natural rubber;
Cellulose; Nylon; Teflon; Bakelite; PVC; Bio-degradable polymers; Applications of polymers.

Chemistry in Everyday Life

Drug-target interaction; Therapeutic action, and examples (excluding structures), of antacids,
antihistamines, tranquilizers, analgesics, antimicrobials, and antifertility drugs; Artificial
sweeteners (names only); Soaps, detergents, and cleansing action.

Practical Organic Chemistry

Detection of elements (N, S, halogens); Detection and identification of the following functional
groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro.


MATHEMATICS Sets, Relations and Functions 

Sets and their representations, different kinds of sets (empty, finite and infinite), algebra of sets,
intersection, complement, difference and symmetric difference of sets and their algebraic
properties, De-Morgan’s laws on union, intersection, difference (for finite number of sets) and
practical problems based on them.
Cartesian product of finite sets, ordered pair, relations, domain and codomain of relations,
equivalence relation
Function as a special case of relation, functions as mappings, domain, codomain, range of
functions, invertible functions, even and odd functions, into, onto and one-to-one functions, special
functions (polynomial, trigonometric, exponential, logarithmic, power, absolute value, greatest
integer etc.), sum, difference, product and composition of functions.


Algebra of complex numbers, addition, multiplication, conjugation, polar representation,
properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric
Statement of fundamental theorem of algebra, Quadratic equations with real coefficients,
relations between roots and coefficients, formation of quadratic equations with given roots,
symmetric functions of roots.
Arithmetic and geometric progressions, arithmetic and geometric means, sums of finite
arithmetic and geometric progressions, infinite geometric series, sum of the first n natural
numbers, sums of squares and cubes of the first n natural numbers.
Logarithms and their properties, permutations and combinations, binomial theorem for a positive
integral index, properties of binomial coefficients.


Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a
scalar and product of matrices, transpose of a matrix, elementary row and column transformations,
determinant of a square matrix of order up to three, adjoint of a matrix, inverse of a square matrix of
order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric
matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Probability and Statistics

Random experiment, sample space, different types of events (impossible, simple, compound),
addition and multiplication rules of probability, conditional probability, independence of events,
total probability, Bayes Theorem, computation of probability of events using permutations and
Measure of central tendency and dispersion, mean, median, mode, mean deviation, standard
deviation and variance of grouped and ungrouped data, analysis of the frequency distribution
with same mean but different variance, random variable, mean and variance of the random


Trigonometric functions, their periodicity and graphs, addition and subtraction formulae,
formulae involving multiple and sub-multiple angles, general solution of trigonometric
Inverse trigonometric functions (principal value only) and their elementary properties.

Analytical Geometry

Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of
Equation of a straight line in various forms, angle between two lines, distance of a point from a
line; Lines through the point of intersection of two given lines, equation of the bisector of the
angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre
of a triangle.
Equation of a circle in various forms, equations of tangent, normal and chord. Parametric
equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle
through the points of intersection of two circles and those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and
eccentricity, parametric equations, equations of tangent and normal.
Locus problems.
Three dimensions: Distance between two points, direction cosines and direction ratios, equation
of a straight line in space, skew lines, shortest distance between two lines, equation of a plane,
distance of a point from a plane, angle between two lines, angle between two planes, angle
between a line and the plane, coplanar lines.

Differential Calculus 

Limit of a function at a real number, continuity of a function, limit and continuity of the sum,
difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of
Continuity of composite functions, intermediate value property of continuous functions.
Derivative of a function, derivative of the sum, difference, product and quotient of two functions,
chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential
and logarithmic functions.
Tangents and normals, increasing and decreasing functions, derivatives of order two, maximum
and minimum values of a function, Rolle’s theorem and Lagrange’s mean value theorem,
geometric interpretation of the two theorems, derivatives up to order two of implicit functions,
geometric interpretation of derivatives.

Integral Calculus

Integration as the inverse process of differentiation, indefinite integrals of standard functions,
definite integrals as the limit of sums, definite integral and their properties, fundamental theorem
of integral calculus.
Integration by parts, integration by the methods of substitution and partial fractions, application
of definite integrals to the determination of areas bounded by simple curves. Formation of ordinary
differential equations, solution of homogeneous differential equations of first order and first
degree, separation of variables method, linear first order differential equations.


Addition of vectors, scalar multiplication, dot and cross products, scalar and vector triple
products, and their geometrical interpretations.

अन्त, इस प्रकार हमने आपको पूरा  सेलेबस औऱ पाठ्यक्रम  की जानकारी प्रदान की ताकि आप आसानी से अपनी – अपनी  परीक्षा की तैयारी कर सकें।

JEE Advanced परीक्षा मे धमाकेदार प्रदर्शन हेतु शुभकामनायें

जईई अडवांस्ड  परीक्षा की तैयारी कर रहे आप सभी परीक्षार्थियो को ना केवल हमने इस आर्टिकल मे JEE Advanced Syllabus 2024 के  बारे मे बताया बल्कि हमने आपको इसकी  विषयवार  महत्वपूर्ण बिंदुओं  की जानकारी प्रदान की ताकि आप आसानी से अपनी  – अपनी परीक्षा की तैयारी कर सके औऱ इसका लाभ प्राप्त कर सकें।

अन्त, आर्टिकल के अन्त मे हमें, उम्मीद है कि, आपको हमारा यह आर्टिकल बेहद पसंद आया होगा जिसके लिए आप हमारे इस आर्टिकल को लाईक, शेयर व कमेंट  करेगे।

क्विक लिंक्स

Official Website Click Here
Join Our Telegram Group Click Here
Direct Link To Download Syllabus PDF Click Here
Direct LInk To Download Admit Card Click Here ( Link Will Active On 29th May, 2023 )

FAQ’s – JEE Advanced Syllabus 2024

आईआईटी जेईई 2024 का सिलेबस क्या है?

जेईई मेन पाठ्यक्रम को तीन वर्गों में विभाजित किया गया है - भौतिकी, रसायन विज्ञान और गणित । कुल स्कोर में प्रत्येक सेक्शन का वेटेज 30% है। फिजिक्स और केमिस्ट्री सेक्शन का सिलेबस ज्यादातर 11वीं और 12वीं की एनसीईआरटी की किताबों पर आधारित होता है।

What is the syllabus for IIT JEE 2024?

The JEE Main syllabus is divided into three sections – Physics, Chemistry and Mathematics. Each section has a weightage of 30% in the overall score. The syllabus for the Physics and Chemistry sections is mostly based on Class 11 and 12 NCERT textbooks.

Leave a Reply

Your email address will not be published. Required fields are marked *