Jee Mains Syllabus 2024: जेईई मेन्स 2024 का नया सेलेबस NTA ने किया जारी, जाने पूरा सेलेबस और करें  एग्जाम में हाई स्कोर?

Jee Mains Syllabus 2024: यदि आप भी  जेईई मेन्स  2024  की तैयारी कर रहे है तो हमारा यह आर्टिकल आपके लिए  काफी लाभकारी व फायदेमंद  होने वाला है जिसमे हम, आपको विस्तार से Jee Mains Syllabus 2024  के बारे मे बतायेगे जिसके लिए आपको  ध्यानपूर्वक  इस लेख को पढ़ना होगा।

BiharHelp App

इसके साथ ही साथ हम, आपको बता देना चाहते  है कि, Jee Mains Syllabus 2024 के तहत  हम, आपको  पेपर 1 व पेपर 2  औऱ इसके  पूरे सेेलेबस  के  यूनिट वाईज सेलेबस  के बारे में बतायेंगे जिसके लिए आपको  ध्यानपूर्वक  इस लेख को पढ़ना होगा जिसमे आपको कोई समस्या ना हो इसकी पूरी जानकारी हम, आपको इस लेख मे प्रदान करेगें तथा

लेख के अन्त में हम, आपको  क्विक लिंक्स  प्रदान करेगे  ताकि आप आसानी से इसी प्रकार के आर्टिकल्स को प्राप्त करके इनका लााभ प्राप्त कर सकें।

Read Also – Bihar SSC Inter Level Syllabus 2023 in Hindi : Prelims & Mains, Exam Pattern | BSSC Inter Level Syllabus 2023 PDF Download

Jee Mains Syllabus 2024

Jee Mains Syllabus 2024 : Overview

Name of The Agency National Testing Agency
Name of the Article Jee Mains Syllabus 2024
Type of Article Syllabus
Stage of Exam Mains
Detailed Information of Jee Mains Syllabus 2024 Please Read The Article Completely.



जेईई मेन्स 2024 का नया सेलेबस NTA ने किया जारी, जाने पूरा सेलेबस और करें  एग्जाम में हाई स्कोर – Jee Mains Syllabus 2024?

आप सभी परीक्षार्थी व युवा जो कि,  जेईई मेन्स 2024  की  प्रवेश परीक्षा  मे बैठने वाले है उनके लिए  NTA  ने   नया सेलेबस  जारी किया है  औऱ  इसीलिए हम, आपको इस लेख में विस्तार से विस्तार से पूरी जानकारी प्रदान करेगे जो कि, इस प्रकार से हैें –

Read Also – 

Syllabus for JEE (Main) – 2024

Syllabus for JEE Main Paper 1 (B.E./B.Tech.)- Mathematics, Physics, and Chemistry

Subject – Mathematics

Name of the Unit Detailed Syllabus
UNIT 1: SETS, RELATIONS, AND FUNCTIONS Sets and their representation: Union, intersection, and complement of sets and their algebraic properties; Power set; Relation, Type of relations, equivalence relations, functions; one-one,
into and onto functions, the composition of functions.
UNIT 2: COMPLEX NUMBERS AND QUADRATIC EQUATIONS Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a + ib and their representation in a plane, Argand diagram, algebra of complex number, modulus, and argument (or amplitude) of a complex number, Quadratic equations in real and complex
number system and their solutions Relations between roots and co-efficient, nature of roots, the formation of quadratic equations with given roots.
UNIT3: MATRICES AND DETERMINANTS Matrices, algebra of matrices, type of matrices, determinants, and matrices of order two and three, evaluation of determinants, area of triangles using determinants, Adjoint, and evaluation
of inverse of a square matrix using determinants and, Test of consistency and solution of simultaneous linear equations in two or three variables using matrices.
UNIT 4: PERMUTATIONS AND COMBINATIONS The fundamental principle of counting, permutation as an arrangement and combination as section, Meaning of P (n,r) and C (n,r), simple applications.
UNIT 5: BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS Binomial theorem for a positive integral index, general term and middle term, and simple applications.
UNIT 6: SEQUENCE AND SERIES Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers, Relation between A.M and G.M
UNIT 7: LIMIT, CONTINUITY, AND DIFFERENTIABILITY Real–valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic,
and exponential functions, inverse function. Graphs of simple functions. Limits, continuity,
and differentiability. Differentiation of the sum, difference, product, and quotient of two functions. Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential,
composite, and implicit functions; derivatives of order up to two, Applications of derivatives: Rate of change of quantities, monotonic-Increasing and decreasing functions, Maxima and minima of functions of one variable
UNIT 8: INTEGRAL CALCULAS Integral as an anti-derivative, Fundamental integral involving algebraic, trigonometric,
exponential, and logarithmic functions. Integrations by substitution, by parts, and by partial functions. Integration using trigonometric identities.The fundamental theorem of calculus, properties of definite integrals. Evaluation of definite
integrals, determining areas of the regions bounded by simple curves in standard form
UNIT 9: DIFFRENTIAL EQUATIONS Ordinary differential equations, their order, and degree, the solution of differential equation by
the method of separation of variables, solution of a homogeneous and linear differential
equation of the type
UNIT 10: CO-ORDINATE GEOMETRY Cartesian system of rectangular coordinates in a plane, distance formula, sections formula,
locus, and its equation, the slope of a line, parallel and perpendicular lines, intercepts of a line
on the co-ordinate axis.
Straight line
Various forms of equations of a line, intersection of lines, angles between two lines, conditions
for concurrence of three lines, the distance of a point form a line, co-ordinate of the centroid,
orthocentre, and circumcentre of a triangle,
Circle, conic sections
A standard form of equations of a circle, the general form of the equation of a circle, its radius
and central, equation of a circle when the endpoints of a diameter are given, points of
intersection of a line and a circle with the centre at the origin and sections of conics, equations
of conic sections (parabola, ellipse, and hyperbola) in standard forms,
UNIT 11: THREE DIMENSIONAL GEOMETRY Coordinates of a point in space, the distance between two points, section formula, directions
ratios, and direction cosines, and the angle between two intersecting lines. Skew lines, the shortest distance between them, and its equation. Equations of a line
UNIT 12: VECTOR ALGEBRA Vectors and scalars, the addition of vectors, components of a vector in two dimensions and
three-dimensional space, scalar and vector products,
UNIT 13: STATISTICS AND PROBABILITY Measures of discretion; calculation of mean, median, mode of grouped and ungrouped data
calculation of standard deviation, variance, and mean deviation for grouped and ungrouped
data. Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s
theorem, probability distribution of a random variate,
UNIT 14: TRIGONOMETRY  Trigonometrical identities and trigonometrical functions, inverse trigonometrical functions,
and their properties

PHYSICS

UNIT 1: PHYSICS AND MEASUREMENT  Units of measurements, System of Units, S I Units, fundamental and derived units, least count, significant figures, Errors in measurements, Dimensions of Physics quantities, dimensional
analysis, and its applications.
UNIT 2: KINEMATICS The frame of reference, motion in a straight line, Position- time graph, speed and velocity;
Uniform and non-uniform motion, average speed and instantaneous velocity, uniformly
accelerated motion, velocity-time, position-time graph, relations for uniformly accelerated
motion, Scalars and Vectors, Vector. Addition and subtraction, scalar and vector products, Unit
Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion,
Uniform Circular Motion.
UNIT 3: LAWS OF MOTION Force and inertia, Newton’s First law of motion; Momentum, Newton’s Second Law of motion, Impulses; Newton’s Third Law of motion. Law of conservation of linear momentum and its
applications. Equilibrium of concurrent forces.
Static and Kinetic friction, laws of friction, rolling friction.
Dynamics of uniform circular motion: centripetal force and its applications: vehicle on a level
circular road, vehicle on a banked road
UNIT 4: WORK, ENERGY, AND POWER Work done by a constant force and a variable force; kinetic and potential energies, work-energy
theorem, power.
The potential energy of spring conservation of mechanical energy, conservative and nonconservative forces; motion in a vertical circle: Elastic and inelastic collisions in one and two
dimensions.
UNIT5: ROTATIONAL MOTION Centre of the mass of a two-particle system, Centre of the mass of a rigid body; Basic concepts
of rotational motion; moment of a force; torque, angular momentum, conservation of angular
momentum and its applications;
The moment of inertia, the radius of gyration, values of moments of inertia for simple
geometrical objects, parallel and perpendicular axes theorems, and their applications.
Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison
of linear and rotational motions.
UNIT 6: GRAVITATION The universal law of gravitation. Acceleration due to gravity and its variation with altitude and
depth. Kepler’s law of planetary motion. Gravitational potential energy; gravitational potential.
Escape velocity, Motion of a satellite, orbital velocity, time period, and energy of satellite.
UNIT 7: PROPERTIES OF SOLIDS AND LIQUIDS Elastic behaviour, Stress-strain relationship, Hooke’s Law. Young’s modulus, bulk modulus,
and modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Effect
of gravity on fluid pressure.
Viscosity. Stokes’ law. terminal velocity, streamline, and turbulent flow.critical velocity.
Bernoulli’s principle and its applications.
Surface energy and surface tension, angle of contact, excess of pressure across a curved surface,
application of surface tension – drops, bubbles, and capillary rise. Heat, temperature, thermal
expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transferconduction, convection, and radiation.
UNIT 8: THERMODYNAMICS Thermal equilibrium, zeroth law of thermodynamics, the concept of temperature. Heat, work,
and internal energy. The first law of thermodynamics, isothermal and adiabatic processes.
The second law of thermodynamics: reversible and irreversible processes.
UNIT 9: KINETIC THEORY OF GASES Equation of state of a perfect gas, work done on compressing a gas, Kinetic theory of gases –
assumptions, the concept of pressure. Kinetic interpretation of temperature: RMS speed of gas
molecules: Degrees of freedom. Law of equipartition of energy and applications to specific heat
capacities of gases; Mean free path. Avogadro’s number.
UNIT 10: OSCILLATIONS AND WAVES Oscillations and periodic motion – time period, frequency, displacement as a function of time.
Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase: oscillations of a
spring -restoring force and force constant: energy in S.H.M. – Kinetic and potential energies;
Simple pendulum – derivation of expression for its time period:
Wave motion. Longitudinal and transverse waves, speed of the travelling wave. Displacement
relation for a progressive wave. Principle of superposition of waves, reflection of waves.
Standing waves in strings and organ pipes, fundamental mode, and harmonics. Beats.
UNIT 11: ELECTROSTATICS Electric charges: Conservation of charge. Coulomb’s law forces between two point charges,
forces between multiple charges: superposition principle and continuous charge distribution.
Electric field: Electric field due to a point charge, Electric field lines. Electric dipole, Electric
field due to a dipole. Torque on a dipole in a uniform electric field.Electric flux. Gauss’s law and its applications to find field due to infinitely long uniformly
charged straight wire uniformly charged infinite plane sheet, and uniformly charged thin
spherical shell. Electric potential and its calculation for a point charge, electric dipole and
system of charges; potential difference, Equipotential surfaces, Electrical potential energy of
a system of two point charges and of electric dipole in an electrostatic field.
Conductors and insulators. Dielectrics and electric polarization, capacitors and capacitances,
the combination of capacitors in series and parallel, and capacitance of a parallel plate capacitor
with and without dielectric medium between the plates. Energy stored in a capacitor
UNIT 12: CURRENT ELECTRICITY Electric current. Drift velocity, mobility, and their relation with electric current. Ohm’s law.
Electrical resistance. V-l characteristics of Ohmic and non-ohmic conductors. Electrical energy
and power. Electrical resistivity and conductivity. Series and parallel combinations of resistors;
Temperature dependence of resistance.
Internal resistance, potential difference, and emf of a cell, a combination of cells in series and
parallel. Kirchhoff’s laws and their applications. Wheatstone bridge. Metre Bridge.
UNIT 13: MAGNETIC EFFECTS OF CURRENT AND MAGNETISM Biot – Savart law and its application to the current carrying circular loop. Ampere’s law and its
applications to infinitely long current carrying straight wire and solenoid. Force on a moving
charge in uniform magnetic and electric fields.
Force on a current-carrying conductor in a uniform magnetic field. The force between two
parallel currents carrying conductors-definition of ampere. Torque experienced by a current
loop in a uniform magnetic field: Moving coil galvanometer, its sensitivity, and conversion to
ammeter and voltmeter.
Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent
solenoid, magnetic field lines; Magnetic field due to a magnetic dipole (bar magnet) along its
axis and perpendicular to its axis. Torque on a magnetic dipole in a uniform magnetic field.
Para-, dia- and ferromagnetic substances with examples, the effect of temperature on magnetic
properties.
UNIT 14: ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS Electromagnetic induction: Faraday’s law. Induced emf and current: Lenz’s Law, Eddy
currents. Self and mutual inductance. Alternating currents, peak and RMS value of alternating
current/ voltage: reactance and impedance: LCR series circuit, resonance: power in AC circuits,
wattless current. AC generator and transformer.
UNIT 15: ELECTROMAGNETIC WAVES Displacement current. Electromagnetic waves and their characteristics, Transverse nature of
electromagnetic waves, Electromagnetic spectrum (radio waves, microwaves, infrared, visible,
ultraviolet. X-rays. Gamma rays), Applications of e.m. waves.
UNIT 16: OPTICS Reflection of light, spherical mirrors, mirror formula. Refraction of light at plane and spherical
surfaces, thin lens formula, and lens maker formula. Total internal reflection and its
applications. Magnification. Power of a Lens. Combination of thin lenses in contact. Refraction
of light through a prism. Microscope and Astronomical Telescope (reflecting and refracting )
and their magnifying powers.
Wave optics: wavefront and Huygens’ principle. Laws of reflection and refraction using
Huygens principle. Interference, Young’s double-slit experiment, and expression for fringe
width, coherent sources, and sustained interference of light. Diffraction due to a single slit,
width of central maximum. Polarization, plane-polarized light: Brewster’s law, uses of planepolarized light and Polaroid.
UNIT 17: DUAL NATURE OF MATTER AND RADIATION Dual nature of radiation. Photoelectric effect. Hertz and Lenard’s observations; Einstein’s photoelectric equation: particle nature of light. Matter waves-wave nature of particle, de Broglie relation.
UNIT 18: ATOMS AND NUCLEI Alpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels,
hydrogen spectrum. Composition and size of nucleus, atomic masses, Mass-energy relation,
mass defect; binding energy per nucleon and its variation with mass number, nuclear fission,
and fusion
UNIT 19: ELECTRONIC DEVICES Semiconductors; semiconductor diode: I-V characteristics in forward and reverse bias; diode
as a rectifier; I-V characteristics of LED. the photodiode, solar cell, and Zener diode; Zener
diode as a voltage regulator. Logic gates (OR. AND. NOT. NAND and NOR)
UNIT 20: EXPERIMENTAL SKILLS Familiarity with the basic approach and observations of the experiments and activities:
1. Vernier calipers -its use to measure the internal and external diameter and depth of a vessel.
2. Screw gauge-its use to determine the thickness/ diameter of thin sheet/wire.
3. Simple Pendulum-dissipation of energy by plotting a graph between the square of amplitude
and time.
4. Metre Scale – the mass of a given object by the principle of moments.
5. Young’s modulus of elasticity of the material of a metallic wire.
6. Surf ace tension of water by capillary rise and effect of detergents,
7. Co-efficient of Viscosity of a given viscous liquid by measuring the terminal velocity of a
given spherical body,
8. Speed of sound in air at room temperature using a resonance tube,
9. Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures.
10. The resistivity of the material of a given wire using a metre bridge.
11. The resistance of a given wire using Ohm’s law.12. Resistance and figure of merit of a galvanometer by half deflection method.
13. The focal length of;
(i) Convex mirror
(ii) Concave mirror, and
(ii) Convex lens, using the parallax method.
14. The plot of the angle of deviation vs angle of incidence for a triangular prism.
15. The refractive index of a glass slab using a travelling microscope.
16. Characteristic curves of a p-n junction diode in forward and reverse bias.
17. Characteristic curves of a Zener diode and finding reverse break down voltage.
18. Identification of Diode. LED,. Resistor. A capacitor from a mixed collection of such items.

CHEMISTRY

PHYSICAL CHEMISTRY

UNIT I: SOME BASIC CONCEPTS IN CHEMISTRY Matter and its nature, Dalton’s atomic theory: Concept of atom, molecule, element, and
compound:: Laws of chemical combination; Atomic and molecular masses, mole concept,
molar mass, percentage composition, empirical and molecular formulae: Chemical equations
and stoichiometry.
UNIT 2: ATOMIC STRUCTURE Nature of electromagnetic radiation, photoelectric effect; Spectrum of the hydrogen atom. Bohr
model of a hydrogen atom – its postulates, derivation of the relations for the energy of the
electron and radii of the different orbits, limitations of Bohr’s model; Dual nature of matter, de
Broglie’s relationship. Heisenberg uncertainty principle. Elementary ideas of quantum
mechanics, quantum mechanics, the quantum mechanical model of the atom, and its important
features. Concept of atomic orbitals as one-electron wave functions: Variation of  and 2
with r for 1s and 2s orbitals; various
quantum numbers (principal, angular momentum, and magnetic quantum numbers) and their
significance; shapes of s, p, and d – orbitals, electron spin, and spin quantum number: Rules for filling electrons in orbitals – Aufbau principle. Pauli’s exclusion principle and Hund’s rule,
electronic configuration of elements, and extra stability of half-filled and completely filled orbitals.
UNIT 3: CHEMICAL BONDING AND MOLECULAR STRUCTURE Kossel-Lewis approach to chemical bond formation, the concept of ionic and covalent bonds.
Ionic Bonding: Formation of ionic bonds, factors affecting the formation of ionic bonds;
calculation of lattice enthalpy.
Covalent Bonding: Concept of electronegativity. Fajan’s rule, dipole moment: Valence Shell
Electron Pair Repulsion (VSEPR ) theory and shapes of simple molecules.
Quantum mechanical approach to covalent bonding: Valence bond theory – its important
features, the concept of hybridization involving s, p, and d orbitals; Resonance.
Molecular Orbital Theory – Its important features. LCAOs, types of molecular orbitals
(bonding, antibonding), sigma and pi-bonds, molecular orbital electronic configurations of
homonuclear diatomic molecules, the concept of bond order, bond length, and bond energy.
Elementary idea of metallic bonding. Hydrogen bonding and its applications.
UNIT 4: CHEMICAL THERMODYNAMICS Fundamentals of thermodynamics: System and surroundings, extensive and intensive properties, state functions, Entropy, types of processes.
The first law of thermodynamics – Concept of work, heat internal energy and enthalpy, heat
capacity, molar heat capacity; Hess’s law of constant heat summation; Enthalpies of bond dissociation, combustion, formation, atomization, sublimation, phase transition, hydration,
ionization, and solution.
The second law of thermodynamics – Spontaneity of processes; S of the universe and G
of the system as criteria for spontaneity. G (Standard Gibbs energy change) and equilibrium
constant
UNIT 5: SOLUTIONS Different methods for expressing the concentration of solution – molality, molarity, mole
fraction, percentage (by volume and mass both), the vapour pressure of solutions and Raoult’s
Law – Ideal and non-ideal solutions, vapour pressure – composition, plots for ideal and nonideal solutions; Colligative properties of dilute solutions – a relative lowering of vapour
pressure, depression of freezing point, the elevation of boiling point and osmotic pressure;
Determination of molecular mass using colligative properties; Abnormal value of molar mass,
van’t Hoff factor and its significance
UNIT 6: EQUILIBRIUM Meaning of equilibrium is the concept of dynamic equilibrium.
Equilibria involving physical processes: Solid-liquid, liquid-gas – gas and solid-gas
equilibria, Henry’s law. General characteristics of equilibrium involving physical processes.
Equilibrium involving chemical processes: Law of chemical equilibrium, equilibrium
constants (Kp and Kc) and their significance, the significance of G and G in chemical
equilibrium, factors affecting equilibrium concentration, pressure, temperature, the effect of
catalyst; Le Chatelier’s principle.
Ionic equilibrium: Weak and strong electrolytes, ionization of electrolytes, various concepts
of acids and bases (Arrhenius. Bronsted – Lowry and Lewis) and their ionization, acid-base
equilibria (including multistage ionization) and ionization constants, ionization of water. pH
scale, common ion effect, hydrolysis of salts and pH of their solutions, the solubility of
sparingly soluble salts and solubility products, and buffer solutions.
UNIT 7: REDOX REACTIONS AND ELECTROCHEMISTRY Electronic concepts of oxidation and reduction, redox reactions, oxidation number, rules for
assigning oxidation number, and balancing of redox reactions.
Electrolytic and metallic conduction, conductance in electrolytic solutions, molar
conductivities and their variation with concentration: Kohlrausch’s law and its applications.
Electrochemical cells – Electrolytic and Galvanic cells, different types of electrodes, electrode
potentials including standard electrode potential, half-cell and cell reactions, emf of a Galvanic
cell and its measurement: Nernst equation and its applications; Relationship between cell
potential and Gibbs’ energy change: Dry cell and lead accumulator; Fuel cells
UNIT 8: CHEMICAL KINETICS Rate of a chemical reaction, factors affecting the rate of reactions: concentration, temperature,
pressure, and catalyst; elementary and complex reactions, order and molecularity of reactions,
rate law, rate constant and its units, differential and integral forms of zero and first-order reactions, their characteristics and half-lives, the effect of temperature on the rate of reactions,
Arrhenius theory, activation energy and its calculation, collision theory of bimolecular gaseous
reactions (no derivation).

INORGANIC CHEMISTRY

UNIT 9: CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES Modem periodic law and present form of the periodic table, s, p. d and f block elements,
periodic trends in properties of elements atomic and ionic radii, ionization enthalpy, electron
gain enthalpy, valence, oxidation states, and chemical reactivity.
UNIT 10: P- BLOCK ELEMENTS Group -13 to Group 18 Elements
General Introduction: Electronic configuration and general trends in physical and chemical
properties of elements across the periods and down the groups; unique behaviour of the first
element in each group.
UNIT 11: d – and f- BLOCK ELEMENTS Transition Elements
General introduction, electronic configuration, occurrence and characteristics, general trends
in properties of the first-row transition elements – physical properties, ionization enthalpy,
oxidation states, atomic radii, colour, catalytic behaviour, magnetic properties, complex
formation, interstitial compounds, alloy formation; Preparation, properties, and uses of
K2Cr2O7, and KMnO4.
Inner Transition Elements
Lanthanoids – Electronic configuration, oxidation states, and lanthanoid contraction.
Actinoids – Electronic configuration and oxidation states.
UNIT 12: CO-ORDINATION COMPOUNDS Introduction to coordination compounds. Werner’s theory; ligands, coordination number,
denticity. chelation; IUPAC nomenclature of mononuclear co-ordination compounds,
isomerism; Bonding-Valence bond approach and basic ideas of Crystal field theory, colour and
magnetic properties; Importance of co-ordination compounds (in qualitative analysis,
extraction of metals and in biological systems).

ORGANIC CHEMISTRY

UNIT 13: PURIFICATION AND CHARACTERISATION OF ORGANIC COMPOUNDS Purification – Crystallization, sublimation, distillation, differential extraction, and
chromatography – principles and their applications.
Qualitative analysis – Detection of nitrogen, sulphur, phosphorus, and halogens. Quantitative analysis (basic principles only) – Estimation of carbon, hydrogen, nitrogen,
halogens, sulphur, and phosphorus.
Calculations of empirical formulae and molecular formulae: Numerical problems in organic
quantitative analysis,
UNIT 14:SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY Tetravalency of carbon: Shapes of simple molecules – hybridization (s and p): Classification
of organic compounds based on functional groups: and those containing halogens, oxygen,
nitrogen, and sulphur; Homologous series: Isomerism – structural and stereoisomerism.
Nomenclature (Trivial and IUPAC)
Covalent bond fission – Homolytic and heterolytic: free radicals, carbocations, and carbanions;
stability of carbocations and free radicals, electrophiles, and nucleophiles.
Electronic displacement in a covalent bond
– Inductive effect, electromeric effect, resonance, and hyperconjugation.
Common types of organic reactions- Substitution, addition, elimination, and rearrangement.
UNITS 15: HYDROCARBONS Classification, isomerism, IUPAC nomenclature, general methods of preparation, properties,
and reactions.
Alkanes – Conformations: Sawhorse and Newman projections (of ethane): Mechanism of
halogenation of alkanes.
Alkenes – Geometrical isomerism: Mechanism of electrophilic addition: addition of hydrogen,
halogens, water, hydrogen halides (Markownikoffs and peroxide effect): Ozonolysis and
polymerization.
Alkynes – Acidic character: Addition of hydrogen, halogens, water, and hydrogen halides:
Polymerization.
Aromatic hydrocarbons – Nomenclature, benzene – structure and aromaticity: Mechanism of
electrophilic substitution: halogenation, nitration.
Friedel-Craft’s alkylation and acylation, directive influence of the functional group in monosubstituted benzene.
UNIT 16: ORGANIC COMPOUNDS CONTAINING HALOGENS General methods of preparation, properties, and reactions; Nature of C-X bond; Mechanisms
of substitution reactions.
Uses; Environmental effects of chloroform, iodoform freons, and DDT
UNIT 17: ORGANIC COMPOUNDS CONTAINING OXYGEN General methods of preparation, properties, reactions, and uses.
ALCOHOLS, PHENOLS, AND ETHERSAlcohols: Identification of primary, secondary, and tertiary alcohols: mechanism of
dehydration.
Phenols: Acidic nature, electrophilic substitution reactions: halogenation. nitration and
sulphonation. Reimer – Tiemann reaction.
Ethers: Structure.
Aldehyde and Ketones: Nature of carbonyl group; Nucleophilic addition to >C=O group,
relative reactivities of aldehydes and ketones; Important reactions such as – Nucleophilic
addition reactions (addition of HCN. NH3, and its derivatives), Grignard reagent; oxidation:
reduction (Wolf Kishner and Clemmensen); the acidity of -hydrogen. aldol condensation,
Cannizzaro reaction. Haloform reaction, Chemical tests to distinguish between aldehydes and
Ketones.
Carboxylic Acids
Acidic strength and factors affecting it,
UNIT 18: ORGANIC COMPOUNDS CONTAINING NITROGEN General methods of preparation. Properties, reactions, and uses.
Amines: Nomenclature, classification structure, basic character, and identification of
primary, secondary, and tertiary amines and their basic character.
Diazonium Salts: Importance in synthetic organic chemistry.
UNIT 19: BIOMOLECULES
General introduction and importance of biomolecules.
CARBOHYDRATES – Classification; aldoses and ketoses: monosaccharides (glucose and
fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose, and maltose).
PROTEINS – Elementary Idea of -amino acids, peptide bond, polypeptides. Proteins:
primary, secondary, tertiary, and quaternary structure (qualitative idea only), denaturation of
proteins, enzymes.
VITAMINS – Classification and functions.
NUCLEIC ACIDS – Chemical constitution of DNA and RNA.
Biological functions of nucleic acids.
Hormones (General introduction)
UNIT 20: PRINCIPLES RELATED TO PRACTICAL CHEMISTRY Detection of extra elements (Nitrogen, Sulphur, halogens) in organic compounds; Detection of
the following functional groups; hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and
ketones) carboxyl, and amino groups in organic compounds.
 The chemistry involved in the preparation of the following:
Inorganic compounds; Mohr’s salt, potash alum.Organic compounds: Acetanilide, p-nitro acetanilide, aniline yellow, iodoform.
 The chemistry involved in the titrimetric exercises – Acids, bases, and the use of indicators,
oxalic-acid vs KMnO4, Mohr’s salt vs KMnO4
 Chemical principles involved in the qualitative salt analysis:
Cations – Pb2+, Cu2+, Al3+, Fe3+, Zn2+, Ni2+, Ca2+, Ba2+, Mg2+
, NHସ

Anions- COଷ
ଶି, S2-
,SOସ
ଶି
,
NO3-, NO2-, Cl-
, Br-
, I- ( Insoluble salts excluded).
Chemical principles involved in the following experiments:
1. Enthalpy of solution of CuSO4
2. Enthalpy of neutralization of strong acid and strong base.
3. Preparation of lyophilic and lyophobic sols.
4. Kinetic study of the reaction of iodide ions with hydrogen peroxide at room temperature

Syllabus for JEE (Main) Paper 2A (B.Arch.) – Mathematics, Aptitude Test, and Drawing

Test

Part – I MATHEMATICS

UNIT 1: SETS, RELATIONS, AND FUNCTIONS Sets and their representation: Union, intersection, and complement of sets and their algebraic
properties; Power set; Relation, Type of relations, equivalence relations, functions; one-one, into
and onto functions, the composition of functions.
UNIT 2: COMPLEX NUMBERS AND QUADRATIC EQUATIONS:
Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a +
ib and their representation in a plane, Argand diagram, algebra of complex number, modulus, and
argument (or amplitude) of a complex number, Quadratic equations in real and complex number
system and their solutions Relations between roots and co-efficient, nature of roots, the formation
of quadratic equations with given roots.
UNIT3: MATRICES AND DETERMINANTS Matrices, algebra of matrices, type of matrices, determinants, and matrices of order two and three,
evaluation of determinants, area of triangles using determinants, Adjoint, and evaluation of inverse
of a square matrix using determinants and, Test of consistency and solution of simultaneous linear
equations in two or three variables using matrices.
UNIT 4: PERMUTATIONS AND COMBINATIONS The fundamental principle of counting, permutation as an arrangement and combination as
section, Meaning of P (n,r) and C (n,r), simple applications
UNIT 5: BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS Binomial theorem for a positive integral index, general term and middle term, and simple
applications.
UNIT 6: SEQUENCE AND SERIES Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two
given numbers, Relation between A.M and G.M.
UNIT 7: LIMIT, CONTINUITY, AND DIFFERENTIABILITY Real–valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic,
and exponential functions, inverse function. Graphs of simple functions. Limits, continuity, and
differentiability. Differentiation of the sum, difference, product, and quotient of two functions.
Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite, and
implicit functions; derivatives of order up to two, Applications of derivatives: Rate of change of
quantities, monotonic-increasing and decreasing functions, Maxima and minima of functions of
one variable,
UNIT 8: INTEGRAL CALCULAS: Integral as an anti-derivative, Fundamental integral involving algebraic, trigonometric,
exponential, and logarithms functions. Integrations by substitution, by parts, and by partial
functions. Integration using trigonometric identities
UNIT 9: DIFFRENTIAL EQUATIONS Ordinary differential equations, their order, and degree, the, solution of differential equation by
the method of separation of variables, solution of a homogeneous and linear differential equation
of the type
UNIT 10: CO-ORDINATE GEOMETRY Cartesian system of rectangular coordinates in a plane, distance formula, sections formula, locus,
and its equation, the slope of a line, parallel and perpendicular lines, intercepts of a line on the
coordinate axis.
Straight line
Various forms of equations of a line, intersection of lines, angles between two lines, conditions
for concurrence of three lines, the distance of a point from a line, co-ordinate of the centroid,
orthocentre, and circumcentre of a triangle,
Circle, conic sections
A standard form of equations of a circle, the general form of the equation of a circle, its radius and
central, equation of a circle when the endpoints of a diameter are given, points of intersection of
a line and a circle with the centre at the origin and sections of conics, equations of conic sections
(parabola, ellipse, and hyperbola) in standard forms,
UNIT 11: THREE-DIMENSIONAL GEOMETRY Coordinates of a point in space, the distance between two points, section formula, directions ratios,
and direction cosines, and the angle between two intersecting lines. Skew lines, the shortest
distance between them, and its equation. Equations of a line
UNIT 12: VECTOR ALGEBRA Vectors and scalars, the addition of vectors, components of a vector in two dimensions and threedimensional space, scalar and vector products,
UNIT 13: STATISTICS AND PROBABILITY Measures of discretion; calculation of mean, median, mode of grouped and ungrouped data
calculation of standard deviation, variance, and mean deviation for grouped and ungrouped data.
Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s
theorem, probability distribution of a random variate,
UNIT 14: TRIGONOMETRY Trigonometrical identities and trigonometrical functions, inverse trigonometrical functions, and
their properties,

Part –II APTITUDE TEST

UNIT – 1 Awareness of persons. Buildings, Materials Objects, Texture related to Architecture and Build-environment, Visualizing threedimensional objects from two-dimensional drawings. Visualizing. Different sides of threedimensional objects. Analytical Reasoning Mental Ability (Visual. Numerical and Verbal)
UNIT – 2 Three dimensional- perception Understanding and appreciation of scale and
proportions of objects, building forms and elements, colour texture harmony and contrast Design
and drawing of geometrical or abstract shapes and patterns in pencil. Transformation of forms
both 2D and 3D union, subtraction rotation, development of surfaces and volumes, Generation of
plans, elevations, and 3D views of objects, creating two-dimensional and three-dimensional
compositions using given shapes and forms.
Part – III DRAWING TEST Sketching of scenes and activities from memory of urbanscape (public space, market, festivals,
street scenes, monuments, recreational spaces, etc.). landscape (riverfronts. Jungle. Gardens, trees.
Plants, etc.) and rural life.
To be conducted in a Drawing sheet.
Note: Candidates are advised to bring pencils. Own geometry box set, crasets and colour
pencils, and crayons for the Drawing Test

Syllabus for JEE (Main) Paper 2B (B.Planning.) – Mathematics, Aptitude Test, and

Planning

Part – I MATHEMATICS

UNIT 1: SETS, RELATIONS, AND FUNCTIONS Sets and their representation: Union, intersection and complement of sets and their algebraic
properties; Power set; Relation, Type of relations, equivalence relations, functions; one-one, into
and onto functions, the composition of functions.
UNIT 2: COMPLEX NUMBERS AND QUADRATIC EQUATIONS Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a +
ib and their representation in a plane, Argand diagram, algebra of complex number, modulus, and
argument (or amplitude) of a complex number, Quadratic equations in real and complex number
system and their solutions Relations between roots and co-efficient, nature of roots, the formation
of quadratic equations with given roots.
UNIT3: MATRICES AND DETERMINANTS Matrices, algebra of matrices, type of matrices, determinants, and matrices of order two and three,
evaluation of determinants, area of triangles using determinants, Adjoint, and evaluation of inverse
of a square matrix using determinants and, Test of consistency and solution of simultaneous linear
equations in two or three variables using matrices.
UNIT 4: PERMUTATIONS AND COMBINATIONS The fundamental principle of counting, permutation as an arrangement and combination as
section, Meaning of P (n,r) and C (n,r), simple applications.
UNIT 5: BINOMIAL THEOREM AND ITS SIMPLE APPLICATIONS Binomial theorem for a positive integral index, general term and middle term, and simple
applications.
UNIT 6: SEQUENCE AND SERIES Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two
given numbers, Relation between A.M and G.M.
UNIT 7: LIMIT, CONTINUITY, AND DIFFERENTIABILITY Real–valued functions, algebra of functions, polynomials, rational, trigonometric, logarithmic,
and exponential functions, inverse function. Graphs of simple functions. Limits, continuity, and
differentiability. Differentiation of the sum, difference, product, and quotient of two functions.
Differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite, and
implicit functions; derivatives of order up to two, Applications of derivatives: Rate of change of
quantities, monotonic-increasing and decreasing functions, Maxima and minima of functions of
one variable,
UNIT 8: INTEGRAL CALCULAS Integral as an anti-derivative, Fundamental integral involving algebraic, trigonometric,
exponential, and logarithmic functions. Integrations by substitution, by parts, and by partial
functions. Integration using trigonometric identities.
UNIT 9: DIFFRENTIAL EQUATIONS Ordinary differential equations, their order, and degree, the solution of differential equation by the
method of separation of variables, solution of a homogeneous and linear differential equation of
the type
UNIT 10: CO-ORDINATE GEOMETRY Cartesian system of rectangular coordinates in a plane, distance formula, sections formula, locus,
and its equation, the slope of a line, parallel and perpendicular lines, intercepts of a line on the
coordinate axis.
Straight line
Various forms of equations of a line, intersection of lines, angles between two lines, conditions
for concurrence of three lines, the distance of a point form a line, co-ordinate of the centroid,
orthocentre, and circumcentre of a triangle,
Circle, conic sections
A standard form of equations of a circle, the general form of the equation of a circle, its radius and
central, equation of a circle when the endpoints of a diameter are given, points of intersection of
a line and a circle with the centre at the origin and sections of conics, equations of conic sections
(parabola, ellipse, and hyperbola) in standard forms,
UNIT 11: THREE-DIMENSIONAL GEOMETRY Coordinates of a point in space, the distance between two points, section formula, directions ratios,
and direction cosines, the angle between two intersecting lines. Skew lines, the shortest distance
between them, and its equation. Equations of a line
UNIT 12: VECTOR ALGEBRA Vectors and scalars, the addition of vectors, components of a vector in two dimensions and threedimensional space, scalar and vector products,
UNIT 13: STATISTICS AND PROBABILITY Measures of discretion; calculation of mean, median, mode of grouped and ungrouped data
calculation of standard deviation, variance, and mean deviation for grouped and ungrouped data.
Probability: Probability of an event, addition and multiplication theorems of probability, Baye’s
theorem, probability distribution of a random variate,
UNIT 14: TRIGONOMETRY Trigonometrical identities and trigonometrical functions, inverse trigonometrical functions, and
their properties,

Part –II APTITUDE TEST

UNIT – 1 Awareness of persons. Buildings, Materials, Objects, and Textures related to Architecture and Build-environment, Visualizing three-dimensional objects from twodimensional drawings. Visualizing. Different sides of three-dimensional objects. Analytical
Reasoning Mental Ability (Visual. Numerical and Verbal)
UNIT – 2 Three dimensional- perception: Understanding and appreciation of scale and
proportions of objects, building forms and elements, colour texture harmony and contrast Design
and drawing of geometrical or abstract shapes and patterns in pencil. Transformation of forms
both 2D and 3D union, subtraction rotation, development of surfaces and volumes, Generation of
plans, elevations, and 3D views of objects, creating two-dimensional and three-dimensional
compositions using given shapes and forms.

Part – III PLANNING

UNIT-1 GENERAL AWARENESS General knowledge questions and knowledge about prominent cities, development issues,
government programs, etc.
UNIT-2 SOCIAL SCIENCES The idea of nationalism, nationalism in India, pre-modern world, 19th-century global economy,
colonialism, and colonial cities, industrialization, resources, and development, types of
resources, agriculture, water, mineral resources, industries, national economy; Human
Settlements
Power-sharing, federalism, political parties, democracy, the constitution of India Economic development- economic sectors, globalization, the concept of development, poverty;
Population structure, social exclusion, and inequality, urbanization, rural development, colonial
cities,
UNIT-3 THINKING SKILLS Comprehension (unseen passage); map reading skills, scale, distance, direction, area, etc.;
critical reasoning; understanding of charts, graphs, and tables; basic concepts of statistics and
quantitative reasoning.

अन्त, इस प्रकार हमने आपको विस्तार से पूरे  सेलेबस  के बारे मे बताया ताकि आप इस पूरे  सेलेबस  की मदद से  प्रवेश परीक्षा  की पूरी – पूरी तैयारी कर सकें।



सारांश

आप सभी विद्यार्थी  जो कि,  जेईई मेन्स 2024   की तैयारी कर रहे है उन्हें समर्पित इस लेख में हमने आपको विस्तार से ना केवल Jee Mains Syllabus 2024  के बारे में बतााय बल्कि हमने आपको विस्तार से पूरे  सेलेबस  के बारे में बताया ताकि आप आसानी से प्रवेश परीक्षा  की तैयारी कर सकें औऱ  सफलता   प्राप्त कर सकें तथा

लेख के अन्त में  हमें, उम्मीद है कि, आपको हमारा यह आर्टिकल बेहद पसंद आया होगा जिसके लिए आप हमारे इस आर्टिकल को  लाईक, शेयर व कमेंट  करेगे।

क्विक लिंक्स

Join Our Telegram Group Click Here
Official Advertisement Cum Syllabus Click Here

FAQ’s – Jee Mains Syllabus 2024

Is JEE 2024 syllabus released?

The testing agency has also released the syllabus for JEE Main 2024 (Session 1 & 2). Candidates can refer to the prescribed syllabus to prepare for the entrance examination which is scheduled to be conducted in January-February.

Is JEE 2024 syllabus reduced?

NEW DELHI: The National Testing Agency released the reduced Joint Entrance Exam (JEE Main) 2024 syllabus along with the brochure and application form on November 1. The last date to submit the JEE Main 2024 application form is November 30.

BiharHelp App :

आपके उज्जवल भविष्य के लिए महत्वपूर्ण जानकारी यहाँ उपलब्ध है - सरकारी नौकरियाँ, परीक्षा परिणाम, प्रवेश पत्र और शैक्षिक अवसर। नवीनतम अपडेट और आवश्यक सूचनाओं के लिए BiharHelp ऐप डाउनलोड करें - आपकी सफलता का साथी।

The Author

अरुणोदय सरकार

पिछले 6 व अधिक सालों से जीवित, सजीव, बेबाक और ठोस लेखनी की छाप छोड़ते आये अरुणोदय सरकार, जिला बेगुसराय, बिहार के रहने वाले है। दिल्ली विश्वविघालय से B.A ( Prog ) और इग्नू से राजनीतिक विज्ञान में M.A करने के बाद आजकल बेगुसराय, बिहार मे रहते हुए स्वतंत्र लेखन कार्य के प्रति प्रतिबद्ध व समर्पित है। सरकारी नौकरी, प्राईवेट नौकरी, एडमिट कार्ड, रिजल्ट, सरकारी योजना, सरकार की नई नीतियों व योजनाओं सहित अन्य सभी विषयों पर गंभीर, जुझारू और आलोचनात्मक / समीक्षात्मक लेखनी के लिए अरुणोदय सरकार कई बार विवादों का शिकार होते हुए निडरतापूर्वक लेखन करने के लिए जाने जाते है।

Leave a Reply

Your email address will not be published. Required fields are marked *